Con la tecnología de Blogger.

Transformadores

lunes, 8 de agosto de 2011

Transformadores


Teoría Elemental

Durante el transporte de la energía eléctrica se originan pérdidas que dependen de su intensidad. Para reducir estas perdidas se utilizan tensiones elevadas, con las que, para la misma potencia, resultan menores intensidades. Por otra parte es necesario que en el lugar donde se aplica la energía eléctrica, la distribución se efectúe a tensiones más bajas y además se adapten las tensiones de distribución a los diversos casos de aplicación.

La preferencia que tiene la corriente alterna frente a la continua radica en que la corriente alterna se puede transformar con facilidad. La utilización de corriente continua queda limitada a ciertas aplicaciones, por ejemplo, para la regulación de motores. Sin embargo, la corriente continua adquiere en los últimos tiempos una significación creciente, por ejemplo para el transporte de energía a tensiones extraaltas.
Para transportar energía eléctrica de sistemas que trabajan a una tensión dada a sistemas que lo hacen a una tensión deseada se utilizan los transformadores.

A este proceso de cambio de tensión se le llama  "transformación".


El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético. Esta constituido por dos o más bobinas de alambre, aisladas entre si eléctricamente por lo general y arrolladas alrededor de un mismo núcleo de material ferromagnético.

El arrollamiento que recibe la energía eléctrica se denomina arollamiento de entrada, con independencia si se trata del mayor (alta tensión) o menor tensión (baja tensión).

El arrollamiento del que se toma la energía eléctrica a la tensión transformada se denomina arrollamiento de salida. En concordancia con ello, los lados del transformador se denominan lado de entrada y lado de salida. El arrollamiento de entrada y el de salida envuelven la misma columna del núcleo de hierro. El núcleo se construye de hierro por que tiene una gran permeabilidad, o sea, conduce muy bien el flujo magnético.

En un transformador, el núcleo tiene dos misiones fundamentales:

a. Desde el punto de vista eléctrico –y esta es su misión principal- es la vía por que discurre el flujo magnético. A través de las partes de la culata conduce el flujo magnético siguiendo un circuito prescrito, de una columna a otra.

b. Desde el punto de vista mecánico es el soporte de los arrollamientos que en él se apoyan.
Para generar el flujo magnético, es decir, para magnetizar el núcleo de hierro hay que gastar energía eléctrica. Dicha energía eléctrica se toma del arrollamiento de entrada.

El constante cambio de magnetización del núcleo de hierro origina pérdidas. Estas pérdidas pueden minimizarse eligiendo tipos de chapa con un bajo coeficiente de pérdidas. Además, como el campo magnético varía respecto al tiempo, en el hierro se originan tensiones que dan orígenes a corrientes parásitas, también llamadas de Foucault. Estas corrientes, asociadas con la resistencia óhmica del hierro, motivan pérdidas que pueden reducirse empleando chapas especialmente finas, de unos 0.3 mm de espesor, aisladas entre sí (apiladas). En cambio, en un núcleo de hierro macizo se producirían pérdidas por corrientes parásitas excesivamente grandes que motivarían altas temperaturas. Una vez descritos los dos principales componentes, va a tomar conocimiento del principio de la transformación:

El flujo magnético, periódicamente variable en el tiempo, originado por la corriente que pasa a través del arrollamiento de entrada induce en el arrollamiento de salida una tensión que varía con la misma frecuencia. Su magnitud depende de la intensidad y de la frecuencia del flujo así como del número de vueltas que tenga el arrollamiento de salida, como se ve en la siguiente formula (ley de la inducción).

E = 4.44 * 10-8 * aC * B * f * N

En la que aC = sección del núcleo en pulgadas cuadradas, B = densidad máxima del flujo en líneas por pulgada cuadrada, E = tensión eficaz, f = frecuencia en Hz y N = número de espiras del devanado, o bien 10-9 * aC * B * f * N, expresando aC y B en cm2.

Transformador Ideal


Un transformador ideal es un artefacto sin pérdidas, con una bobina de entrada y una bobina de salida. Las relaciones entre los voltajes de entrada y de salida, y entre la corriente de entrada y de salida, se establece mediante dos ecuaciones sencillas. La figura l muestra un transformador ideal.


Figura 1. a) Esquema de un transformador ideal. b) Símbolos esquemáticos de un transformador ideal.

Transformador Real

Los transformadores ideales descritos anteriormente, nunca se podrán construir en realidad. Lo que puede construirse son transformadores reales; dos o más bobinas de alambre, físicamente envueltas alrededor de un núcleo ferromagnético. Las características de un transformadores real se aproximan mucho a las de un transformadores ideal, pero sólo hasta un cierto grado. En esta sección estudiaremos el comportamiento de los transformadores reales. Para entender el funcionamiento de un transformador real, refirámonos a la figura 1. Esta nos muestra un transformador que consiste en dos bobinas de alambre enrolladas alrededor de un núcleo del transformador. La bobina primaria del transformador está conectada a una fuente de fuerza de ca y la bobina secundaria está en circuito abierto. La curva de histéresis del transformador se ilustra en la figura 2.

Figura 1: Transformador real sin carga conectada al secundario.

Autotransformador

El autotransformador puede ser considerado simultáneamente como un caso particular del transformador o del bobinado con núcleo de hierro. Tiene un solo bobinado arrollado sobre el núcleo, pero dispone de cuatro bornes, dos para cada circuito, y por ello presenta puntos en común con el transformador . En realidad, lo que conviene es estudiarlo independientemente, pero utilizando las leyes que ya vimos para los otros dos casos, pues así se simplifica notablemente el proceso teórico.

La figura siguiente nos muestra un esquema del autotransformador. Consta de un bobinado de extremos A y D, al cual se le ha hecho una derivación en el punto intermedio B. Por ahora llamaremos primario a la sección completa A D y secundario a la porción B D, pero en la práctica puede ser a la inversa, cuando se desea elevar la tensión primaria.



Transformador Trifásico

Casi todos los sistemas importantes de generación y distribución de potencia del mundo son, hoy en día, sistemas de ca trifásicos.

Puesto que los sistemas trifásicos desempeñan un papel tan importante en la vida moderna, es necesario entender la forma como los transformadores se utilizan en ella.

Los transformadores para circuitos trifásicos pueden construirse de dos maneras.

Estas son:

a. Tomando tres transformadores monofásicos y conectándolos en un grupo trifásico.

b. Haciendo un transformador trifásico que consiste en tres juegos de devanados enrollados sobre un núcleo común.

Conceptos de Diseño

Núcleo

Existen 2 tipos de núcleos fundamentales de estructura del transformador ellos son el tipo nucleo y el tipo acorazado, los cuales se detallan a continuación.

Tipo Núcleo: este tipo de núcleo se representa en la fig.1, indicando el corte A-1 la sección transversal que se designa con S (cm2). Este núcleo no es macizo, sino que esta formado por un paquete de chapas superpuestas, y aisladas eléctricamente entre sí. Para colocarlas y poder ubicar el bobinado terminado alrededor del núcleo, se construyen cortadas, colocando alternadamente una sección U con una sección I.

La capa siguiente superior cambia la posición I con respecto a la U.


Laminas de acero al Silicio

La aislación entre chapas se consigue con barnices especiales, con papel de seda, o simplemente oxidando las chapas con un chorro de vapor.

Núcleo Tipo Acorazado: este tipo de núcleo es más perfecto, pues se reduce la dispersión, se representa en la fig.2, en vistas. Obsérvese que las líneas de fuerza de la parte central, alrededor de la cual se colocan las bobinas se bifurcan abajo y arriba hacia los 2 costados, de manera que todo el contorno exterior del núcleo puede tener la mitad de la parte central. Esto vale para las 2 ramas laterales como también para las 2 cabezas. Para armar el núcleo acorazado también se lo construye en trozos, unos en forma de E y otros en forma de I, y se colocan alternados, para evitar que las juntas coincidan.

Vista de un núcleo tipo acarazado con indicación de la longitud magnética media.

El hecho que los núcleos sean hechos en dos trozos, hace que aparezcan juntas donde los filos del hierro no coinciden perfectamente, quedando una pequeña luz que llamaremos entrehierro. Obsérvese que en el tipo núcleo hay dos entrehierros en el recorrido de las fuerzas, y que el acorazado también, porque los dos laterales son atravesados por la mitad de líneas cada uno.

Devanados

Hay dos formas típicas de bobinados para transformadores los cilíndricos y planos. Los núcleo son los que determinan la elección de uno u otro tipo, salvo que se requieran propiedades especiales (baja capacidad distribuida, para uso en telecomunicaciones, etc.).

a. Cilíndrico: este tipo se usa cuando el núcleo del transformador es del tipo núcleo.

b. Plano: este tipo se usa cuando el núcleo del transformador es del tipo acorazado.

Los dos bobinados primario y secundario, rara vez se apartan en dos simples grupos de espiras, encimándolas; generalmente se apartan en dos partes o más envueltas uno encima del otro, con el embobinado de baja tensión en la parte interna. Dicha conformación sirve para los siguientes propósitos.

a. Simplifica el problema de aislar el embobinado de alto voltaje del núcleo.

b. Causa mucho menos filtración de flujo, como seria el caso si los 2 embobinados estuvieran separados por alguna distancia del núcleo.

c. Mejora la refrigeración.

Los materiales aislantes para el bobinado, o para colocar entre capas, son: papel barnizado, fibra, micanita, cinta impregnada, algodón impregnado, etc., para transformadores con bobinados al aire, y para los sumergidos en baños de aceite, se utilizan los mismos materiales sin impregnarse; debe evitarse el uso del caucho en los transformadores en baño de aceite, pues este lo ataca, y tiene efectos nocivos también sobre la micanita y aun sobre los barnices. Las piezas separadoras entre bobinados, secciones, o entre estas y el núcleo pueden ser de madera, previamente cocida en aceite, aunque actualmente se prefieren los materiales duros a base de papel o similares (pertinax, etc.). Si se usa madera, no debe interpretarse como que se dispone de aislación, sino solamente de un separador.

En cuanto a los conductores para hacer bobinas, su tipo depende de la sección, pues hasta 6mm² pueden usarse alambre y más arriba de ese límite se usan cables de muchos hilos, o bien cintas planas, para facilitar el bobinaje. La aislación para los conductores pueden ser algodón, que luego se impregnará si no se emplea baño de aceite. Para transformadores de soldadura que trabajan con tensiones muy bajas y corrientes muy fuertes , se suelen colocar las cintas de cobre sin aislación, pues la resistencia de contacto entre ellas es suficiente para evitar drenajes de corriente. Esta situación mejora aún debido a la oxidación superficial del cobre.

Refrigeracion y Aislamiento

Aislamiento

Los sistemas de aislamiento usados en transformadores de potencia comprenden sistemas líquidos y sistemas gaseosos. En ambos casos se usa también algo de aislamiento sólido. Los sistemas líquidos incluyen aceite, que es el más usado, y askarel, que se usa para evitar la combustibilidad. Los sistemas gaseosos incluyen nitrógeno, aire y gases fluorados (por ejemplo, exafluoruro de azufre). Los gases fluorados se usan para evitar la combustibilidad y limitar los efectos secundarios de defectos internos.

El aislamiento principal separa el devanado de alta tensión del devanado de baja tensión. Este aislamiento soporta la tensión más elevada y ocupa el espacio más limitado; por esta razón, generalmente funciona con las solicitaciones más elevadas. Según la construcción, puede utilizarse el aislamiento de capas o el aislamiento de bobinas entre las distintas secciones de los devanados. El aislamiento de espiras se aplica a cada cable del conductor o a grupos de cables que formen una espira única.

Refrigeración

La eliminación del calor provocado por las pérdidas, es necesario para evitar una temperatura interna excesiva que podría acortar la vida del aislamiento.

0 comentarios:

Publicar un comentario

About Me

Mi foto
Mauricio Vistosi
Ver todo mi perfil

  © Blogger template The Professional Template II by Ourblogtemplates.com 2009

Back to TOP